西安电子科技大学学报

2021, v.48(02) 7-14

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

采用CNN-SSD的雷达HRRP小样本目标识别方法
Radar HRRP based few-shot target recognition with CNN-SSD

郭泽坤;田隆;韩宁;王鹏辉;刘宏伟;陈渤;

摘要(Abstract):

雷达高分辨距离像非合作目标识别技术的发展主要受限于两个方面:一是由于非合作目标观测频率极低,导致带标签样本量严重不足,使非合作目标识别成为典型的小样本识别问题,这在学界依然是一个没有定论的开放性的热点和难点问题;二是现有的目标识别方法多基于完备数据集假设,使得其与非合作目标小样本目标识别问题严重失配。针对上述问题,对于非合作目标识别抛开数据集完备假设,提出了一种采用卷积神经网络模型连续自蒸馏的雷达高分辨距离像小样本目标识别方法。该方法首先利用包含45类合作目标的完备的训练数据集训练,得到一个初始的类别无关的特征提取器;基于此,进一步采用模型连续自蒸馏机制得到更具泛化能力的特征提取器;最后,在非合作目标上对所提取特征的泛化能力进行了测试。实验结果表明,对于5类非合作目标,所提方法在仅有1个、5个和10个训练样本的情况下,平均识别率分别达到61.26%,84.69%和92.52%,实现了对库外样本的快速、有效识别。

关键词(KeyWords): 雷达目标识别;小样本学习;特征提取;高分辨距离像;卷积神经网络;连续自蒸馏

Abstract:

Keywords:

基金项目(Foundation): 国家杰出青年科学基金(61525105);; 国家自然科学基金(61771361);; 高等学校学科创新引智计划(111计划)(B18039)

作者(Author): 郭泽坤;田隆;韩宁;王鹏辉;刘宏伟;陈渤;

Email:

DOI: 10.19665/j.issn1001-2400.2021.02.002

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享